Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173.234
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 126, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614964

RESUMO

BACKGROUND: The accumulation of visceral and ectopic fat comprise a major cause of cardiometabolic diseases. However, novel drug targets for reducing unnecessary visceral and ectopic fat are still limited. Our study aims to provide a comprehensive investigation of the causal effects of the plasma proteome on visceral and ectopic fat using Mendelian randomization (MR) approach. METHODS: We performed two-sample MR analyses based on five large genome-wide association study (GWAS) summary statistics of 2656 plasma proteins, to screen for causal associations of these proteins with traits of visceral and ectopic fat in over 30,000 participants of European ancestry, as well as to assess mediation effects by risk factors of outcomes. The colocalization analysis was conducted to examine whether the identified proteins and outcomes shared casual variants. RESULTS: Genetically predicted levels of 14 circulating proteins were associated with visceral and ectopic fat (P < 4.99 × 10- 5, at a Bonferroni-corrected threshold). Colocalization analysis prioritized ten protein targets that showed effect on outcomes, including FST, SIRT2, DNAJB9, IL6R, CTSA, RGMB, PNLIPRP1, FLT4, PPY and IL6ST. MR analyses revealed seven risk factors for visceral and ectopic fat (P < 0.0024). Furthermore, the associations of CTSA, DNAJB9 and IGFBP1 with primary outcomes were mediated by HDL-C and SHBG. Sensitivity analyses showed little evidence of pleiotropy. CONCLUSIONS: Our study identified candidate proteins showing putative causal effects as potential therapeutic targets for visceral and ectopic fat accumulation and outlined causal pathways for further prevention of downstream cardiometabolic diseases.


Assuntos
Adiposidade , Doenças Cardiovasculares , Humanos , Adiposidade/genética , Proteoma , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Obesidade , Proteínas de Membrana , Chaperonas Moleculares , Proteínas de Choque Térmico HSP40
2.
Artigo em Inglês | MEDLINE | ID: mdl-38617829

RESUMO

Background: Spinocerebellar ataxia 21 (SCA21) is a rare neurological disorder caused by heterozygous variants in TMEM240. A growing, yet still limited number of reports suggested that hyperkinetic movements should be considered a defining component of the disease. Case Series: We describe two newly identified families harboring the recurrent pathogenic TMEM240 p.Pro170Leu variant. Both index patients and the mother of the first proband developed movement disorders, manifesting as myoclonic dystonia and action-induced dystonia without co-occurring ataxia in one case, and pancerebellar syndrome complicated by action-induced dystonia in the other. We reviewed the literature on TMEM240 variants linked to hyperkinetic disorders, comparing our cases to described phenotypes. Discussion: Adding to prior preliminary observations, our series highlights the relevance of hyperkinetic movements as clinically meaningful features of SCA21. TMEM240 mutation should be included in the differential diagnosis of myoclonic dystonia and ataxia-dystonia syndromes.


Assuntos
Distonia , Distúrbios Distônicos , Mioclonia , Degenerações Espinocerebelares , Humanos , Distonia/diagnóstico , Distonia/genética , Mioclonia/diagnóstico , Mioclonia/genética , Hipercinese , Ataxia , Doenças Raras , Síndrome , Proteínas de Membrana
3.
Sci Rep ; 14(1): 8677, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622314

RESUMO

Oxidative stress is characterized by an excessive concentration of reactive oxygen species (ROS) resulting from a disturbance in the balance between ROS production and their removal by antioxidant systems (SOD, CAT, GPx). Prolonged and intense oxidative stress can cause various forms of damage to cells, which markers are total antioxidant capacity (TAC), reactive oxygen species modulator (ROMO1), and malondialdehyde (MDA). It has been demonstrated that magnetic fields can positively affect human health, for example, by reducing oxidative stress. Determination of the effect of a rotating magnetic field (RMF) on the activity/concentration of selected oxidative stress markers. A group of 30 healthy volunteers (15 women and 15 men) (mean age 24.8 ± 5.1) in the study classified into the following groups: internal control group (CG);1 h 25 Hz (samples placed in the field for one hour at 25 Hz); 3 h 25 Hz (samples placed in the field for 3 h at 25 Hz), the 1 h 50 Hz group ( placed in RMF for an hour at 50 Hz), and a group of 3 h 50 Hz (samples placed in the field for 3 h at 50 Hz). Serum samples were collected in K2EDTA tubes.. The magnetic induction value obtained for RMF is 37.06 mT and 42.64 mT.Activity/concentration of selected oxidative stress markers was analyzed by ELISA. The influence of an RMF on the activity/concentration of SOD, MDA, TAC, and ROMO1 was demonstrated (p < 0.001; p = 0.0013; p < 0.001; p = 0.003). The RFM can reduce oxidative stress, as evidenced by higher SOD and CAT activities in the CG than in samples placed in the RFM. Prolonged exposure to the RFM at 50 Hz increased the TAC level, indicating an intensification of oxidative stress in these samples. The optimal conditions for staying in the RFM (reducing oxidative stress) are 1 h 50 Hz for SOD and MDA; 3 h 25 Hz for CAT and TAC. In the case of ROMO1, it is stated that 1 h 25 Hz are the optimal conditions for no increased production of ROS.


Assuntos
Antioxidantes , Sulfanilamidas , Superóxido Dismutase , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Voluntários Saudáveis , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Malondialdeído , Proteínas de Membrana , Proteínas Mitocondriais
4.
Platelets ; 35(1): 2337255, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38630028

RESUMO

Exosomes carry large cargo of proteins, lipids, and nucleic acids, serving as versatile biomarkers for disease diagnosis and vehicles for drug delivery. However, up to date, no well recognized standard procedures for exosome storage were available for clinical application. This study aimed to determine the optimal storage conditions and the anticoagulants for plasma-derived exosome isolation. Fresh whole blood samples were collected from healthy participants and preserved in four different anticoagulants including sodium citrate (SC1/4), sodium citrate (SC1/9), lithium heparin (LH), or Ethylenediamine tetraacetic acid (EDTA), respectively. Exosomes were extracted from the plasma by differential ultracentrifugation and stored at three different temperatures, 4°C, -20°C or - 80°C for a duration ranging from one week to six months. All plasma samples for storage conditions comparison were pretreated with LH anticoagulant. Exosome features including morphological characteristics, pariticles size diameter, and surface protein profiles (TSG101, CD63, CD81, CD9, CALNEXIN) were assessed by transmission electron microscopy, Nanoparticle Tracking Analysis, and Western Blotting, respectively. Exosomes preserved in LH and SC1/4 group tended to remain intact microstructure with highly abundant protein biomarkers. Exosomes stored at 4°C for short time were prone to be more stable compared to thos at -80°C. Exosomes stored in plasma were superior in terms of ultrastructure, size diameter and surface protein expression to those stored in PBS. In conclusion, plasma-dervied exosome characteristics strictly depend on the anticoagulants and storage temperature and duration.


What is the context? Effective isolation of exosomes is a prerequisite for subsequent investigation into its involvemnt in disease development as well as potentialtherapeutic applications.Anticoagulants, storage temperature and durations might change the microscopical structure, integrity and also the stability of plasma-derived exosomes. However, no internationally recognized standard of exosome storage procedure was available for clinical use.What is new? Our finding evaluated the effect of anticoagulants and storage on plasma exosome characteristics.Exosomes isolated from plasma preserved with Li-heparin and sodium citrate (1/4) showed better physical properties and surface marker protein expression.Isolated exosomes appeared more stable in a short time for 4°C compared to −80°C. Storage of exosomes in plasma showed better physical properties and surface marker protein expression than in PBS.What is the impact? Our findings inform the significance of standardizing procedure of exosome isolation and preservation.


Assuntos
Exossomos , Humanos , Citrato de Sódio , Temperatura , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Heparina , Proteínas de Membrana , Biomarcadores
5.
Proc Natl Acad Sci U S A ; 121(15): e2316447121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557174

RESUMO

Natural killer (NK) cell immunotherapy has gained attention as a promising strategy for treatment of various malignancies. In this study, we used a genome-wide CRISPR screen to identify genes that provide protection or susceptibility to NK cell cytotoxicity. The screen confirmed the role of several genes in NK cell regulation, such as genes involved in interferon-γ signaling and antigen presentation, as well as genes encoding the NK cell receptor ligands B7-H6 and CD58. Notably, the gene TMEM30A, encoding CDC50A-beta-subunit of the flippase shuttling phospholipids in the plasma membrane, emerged as crucial for NK cell killing. Accordingly, a broad range of TMEM30A knock-out (KO) leukemia and lymphoma cells displayed increased surface levels of phosphatidylserine (PtdSer). TMEM30A KO cells triggered less NK cell degranulation, cytokine production and displayed lower susceptibility to NK cell cytotoxicity. Blockade of PtdSer or the inhibitory receptor TIM-3, restored the NK cell ability to eliminate TMEM30A-mutated cells. The key role of the TIM-3 - PtdSer interaction for NK cell regulation was further substantiated by disruption of the receptor gene in primary NK cells, which significantly reduced the impact of elevated PtdSer in TMEM30A KO leukemic cells. Our study underscores the potential significance of agents targeting the interaction between PtdSer and TIM-3 in the realm of cancer immunotherapy.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Células Matadoras Naturais , Leucemia , Linfoma , Membrana Celular/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interferon gama/metabolismo , Receptores de Células Matadoras Naturais , Humanos , Leucemia/metabolismo , Linfoma/metabolismo , Proteínas de Membrana/metabolismo
6.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612509

RESUMO

Cancer remains a leading cause of mortality worldwide and calls for novel therapeutic targets. Membrane proteins are key players in various cancer types but present unique challenges compared to soluble proteins. The advent of computational drug discovery tools offers a promising approach to address these challenges, allowing for the prioritization of "wet-lab" experiments. In this review, we explore the applications of computational approaches in membrane protein oncological characterization, particularly focusing on three prominent membrane protein families: receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and solute carrier proteins (SLCs). We chose these families due to their varying levels of understanding and research data availability, which leads to distinct challenges and opportunities for computational analysis. We discuss the utilization of multi-omics data, machine learning, and structure-based methods to investigate aberrant protein functionalities associated with cancer progression within each family. Moreover, we highlight the importance of considering the broader cellular context and, in particular, cross-talk between proteins. Despite existing challenges, computational tools hold promise in dissecting membrane protein dysregulation in cancer. With advancing computational capabilities and data resources, these tools are poised to play a pivotal role in identifying and prioritizing membrane proteins as personalized anticancer targets.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Reações Cruzadas , Descoberta de Drogas , Aprendizado de Máquina , Neoplasias/tratamento farmacológico
7.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612567

RESUMO

Autophagy, a catabolic process orchestrating the degradation of proteins and organelles within lysosomes, is pivotal for maintaining cellular homeostasis. However, its dual role in cancer involves preventing malignant transformation while fostering progression and therapy resistance. Vacuole Membrane Protein 1 (VMP1) is an essential autophagic protein whose expression, per se, triggers autophagy, being present in the whole autophagic flux. In pancreatic cancer, VMP1-whose expression is linked to the Kirsten Rat Sarcoma Virus (KRAS) oncogene-significantly contributes to disease promotion, progression, and chemotherapy resistance. This investigation extends to breast cancer, colon cancer, hepatocellular carcinoma, and more, highlighting VMP1's nuanced nature, contingent on specific tissue contexts. The examination of VMP1's interactions with micro-ribonucleic acids (miRNAs), including miR-21, miR-210, and miR-124, enhances our understanding of its regulatory network in cancer. Additionally, this article discusses VMP1 gene fusions, especially with ribosomal protein S6 kinase B1 (RPS6KB1), shedding light on potential implications for tumor malignancy. By deciphering the molecular mechanisms linking VMP1 to cancer progression, this exploration paves the way for innovative therapeutic strategies to disrupt these pathways and potentially improve treatment outcomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias do Colo , Neoplasias Hepáticas , MicroRNAs , Humanos , Autofagia/genética , MicroRNAs/genética , Proteínas de Membrana
8.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612754

RESUMO

Epstein-Barr Virus (EBV) exists in a latent state in 90% of the world's population and is linked to numerous cancers, such as Burkitt's Lymphoma, Hodgkin's, and non-Hodgkin's Lymphoma. One EBV latency protein, latency membrane protein 2A (LMP2A), is expressed in multiple latency phenotypes. LMP2A signaling has been extensively studied and one target of LMP2A is the mammalian target of rapamycin (mTOR). Since mTOR has been linked to reprogramming tumor metabolism and increasing levels of hypoxia-inducible factor 1 α (HIF-1α), we hypothesized that LMP2A would increase HIF-1α levels to enhance ATP generation in B lymphoma cell lines. Our data indicate that LMP2A increases ATP generation in multiple Burkitt lymphoma cell lines that were dependent on HIF-1α. Subsequent studies indicate that the addition of the mTOR inhibitor, rapamycin, blocked the LMP2A-dependent increase in HIF-1α. Further studies demonstrate that LMP2A does not increase HIF-1α levels by increasing HIF-1α RNA or STAT3 activation. In contrast, LMP2A and mTOR-dependent increase in HIF-1α required mTOR-dependent phosphorylation of p70 S6 Kinase and 4E-BP1. These findings implicate the importance of LMP2A in promoting B cell lymphoma survival by increasing ATP generation and identifying potential pharmaceutical targets to treat EBV-associated tumors.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4 , Proteínas de Membrana , Serina-Treonina Quinases TOR , Trifosfato de Adenosina
9.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612777

RESUMO

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Assuntos
Glioblastoma , Glioma , Doença de Parkinson , Humanos , Glioblastoma/genética , Proteínas de Membrana/genética , Células Endoteliais , 60489 , Glioma/genética , Neuroglia , Neovascularização Patológica/genética
10.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612924

RESUMO

Vasorin (VASN), a transmembrane protein heavily expressed in endothelial cells, has garnered recent interest due to its key role in vascular development and pathology. The oligomeric state of VASN is a crucial piece of knowledge given that receptor clustering is a frequent regulatory mechanism in downstream signaling activation and amplification. However, documentation of VASN oligomerization is currently absent. In this brief report, we describe the measurement of VASN oligomerization in its native membranous environment, leveraging a class of fluorescence fluctuation spectroscopy. Our investigation revealed that the majority of VASN resides in a monomeric state, while a minority of VASN forms homodimers in the cellular membrane. This result raises the intriguing possibility that ligand-independent clustering of VASN may play a role in transforming growth factor signaling.


Assuntos
Células Endoteliais , Proteínas de Membrana , Membrana Celular , Transdução de Sinais , Espectrometria de Fluorescência
11.
Cell Biochem Funct ; 42(3): e4016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613224

RESUMO

EH domain-containing protein 2 (EHD2) is a member of the EHD protein family and is mainly located in the plasma membrane, but can also be found in the cytoplasm and endosomes. EHD2 is also a nuclear-cytoplasmic shuttle protein. After entering the cell nuclear, EHD2 acts as a corepressor of transcription to inhibit gene transcription. EHD2 regulates a series of biological processes. As a key regulator of endocytic transport, EHD2 is involved in the formation and maintenance of endosomal tubules and vesicles, which are critical for the intracellular transport of proteins and other substances. The N-terminal of EHD2 is attached to the cell membrane, while its C-terminal binds to the actin-binding protein. After binding, EHD2 connects with the actin cytoskeleton, forming the curvature of the membrane and promoting cell endocytosis. EHD2 is also associated with membrane protein trafficking and receptor signaling, as well as in glucose metabolism and lipid metabolism. In this review, we highlight the recent advances in the function of EHD2 in various cellular processes and its potential implications in human diseases such as cancer and metabolic disease. We also discussed the prospects for the future of EHD2. EHD2 has a broad prospect as a therapeutic target for a variety of diseases. Further research is needed to explore its mechanism, which could pave the way for the development of targeted treatments.


Assuntos
Fenômenos Biológicos , Proteínas Nucleares , Humanos , Proteínas de Membrana , Citoplasma , Citosol , Proteínas de Transporte
12.
Technol Cancer Res Treat ; 23: 15330338241239139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38613350

RESUMO

BACKGROUND: Cuproptosis is a novel type of mediated cell death strongly associated with the progression of several cancers and has been implicated as a potential therapeutic target. However, the role of cuproptosis in cholangiocarcinoma for prognostic prediction, subgroup classification, and therapeutic strategies remains largely unknown. METHODS: A systematic analysis was conducted among 146 cuproptosis-related genes and clinical information based on independent mRNA and protein datasets to elucidate the potential mechanisms and prognostic prediction value of cuproptosis-related genes. A 10-cuproptosis-related gene prediction model was constructed, and its effects on cholangiocarcinoma prognosis were significantly connected to poor patient survival. Additionally, the expression patterns of our model included genes that were validated with several cholangiocarcinoma cancer cell lines and a normal biliary epithelial cell line. RESULTS: First, a 10-cuproptosis-related gene signature (ADAM9, ADAM17, ALB, AQP1, CDK1, MT2A, PAM, SOD3, STEAP3, and TMPRSS6) displayed excellent predictive performance for the overall survival of cholangiocarcinoma. The low-cuproptosis group had a significantly better prognosis than the high-cuproptosis group with transcriptome and protein cohorts. Second, compared with the high-risk and low-risk groups, the 2 groups displayed distinct tumor microenvironments, reduced proportions of endothelial cells, and increased levels of cancer-associated fibroblasts based on CIBERSORTx and EPIC analyses. Third, patients' sensitivities to chemotherapeutic drugs and immune checkpoints revealed distinctive differences between the 2 groups. Finally, in replicating the expression patterns of the 10 genes, these results were validated with quantitative real-time polymerase chain reaction results validating the abnormal expression pattern of the target genes in cholangiocarcinoma. CONCLUSIONS: Collectively, we established and verified an effective prognostic model that could separate cholangiocarcinoma patients into 2 heterogeneous cuproptosis subtypes based on the molecular or protein characteristics of 10 cuproptosis-related genes. These findings may provide potential benefits for unveiling molecular characteristics and defining subgroups could improve the early diagnosis and individualized treatment of cholangiocarcinoma patients.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Células Endoteliais , Prognóstico , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Microambiente Tumoral/genética , Proteínas de Membrana , Proteínas ADAM
13.
Immunohorizons ; 8(4): 326-338, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625120

RESUMO

The BCR allows for Ag-driven B cell activation and subsequent Ag endocytosis, processing, and presentation to recruit T cell help. Core drivers of BCR signaling and endocytosis are motifs within the receptor's cytoplasmic tail (primarily CD79). However, BCR function can be tuned by other proximal cellular elements, such as CD20 and membrane lipid microdomains. To identify additional proteins that could modulate BCR function, we used a proximity-based biotinylation technique paired with mass spectrometry to identify molecular neighbors of the murine IgM BCR. Those neighbors include MHC class II molecules, integrins, various transporters, and membrane microdomain proteins. Class II molecules, some of which are invariant chain-associated nascent class II, are a readily detected BCR neighbor. This finding is consistent with reports of BCR-class II association within intracellular compartments. The BCR is also in close proximity to multiple proteins involved in the formation of membrane microdomains, including CD37, raftlin, and Ig superfamily member 8. Known defects in T cell-dependent humoral immunity in CD37 knockout mice suggest a role for CD37 in BCR function. In line with this notion, CRISPR-based knockout of CD37 expression in a B cell line heightens BCR signaling, slows BCR endocytosis, and tempers formation of peptide-class II complexes. These results indicate that BCR molecular neighbors can impact membrane-mediated BCR functions. Overall, a proximity-based labeling technique allowed for identification of multiple previously unknown BCR molecular neighbors, including the tetraspanin protein CD37, which can modulate BCR function.


Assuntos
Imunidade Humoral , Proteínas de Membrana , Animais , Camundongos , Linhagem Celular , Ativação Linfocitária , Camundongos Knockout , Receptores de Antígenos de Linfócitos B
14.
J Mol Model ; 30(5): 134, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625615

RESUMO

CONTENT: Ubiquitin, a ubiquitous small protein found in all living organisms, is crucial for tagging proteins earmarked for degradation and holds pivotal importance in biomedicine. Protein functionality is intricately linked to its structure. To comprehend the impact of diverse temperatures on ubiquitin protein structure, our study delved into the energy landscape, hydrogen bonding, and overall structural stability of ubiquitin protein at varying temperatures. Through meticulous analysis of root mean square deviation and root mean square fluctuation, we validated the robustness of the simulation conditions employed. Within our simulated system, the bonding energy and electrostatic potential energy exhibited linear augmentation, while the van der Waals energy demonstrated a linear decline. Additionally, our findings highlighted that the α-Helix secondary structure of the ubiquitin protein gradually transitions toward helix destabilization under high-temperature conditions. The secondary structure of ubiquitin protein experiences distinct changes under varying temperatures. The outcomes of our molecular simulations offer a theoretical framework that enhances our comprehension of how temperature impacts the structural stability of ubiquitin protein. These insights contribute not only to a deeper understanding of iniquity's behavior but also hold broader implications in the realm of biomedicine and beyond. METHODS: All the MD simulations were performed using the GROMACS software with GROMOS96 force field and SPC for water. The ubiquitin protein was put in the center of a cubic box with a length of 8 nm, a setting that allowed > 0.8 nm in the minimal distance between the protein surface and the box wall. To remove the possible coordinate collision of the configurations, in the beginning, the steepest descent method was used until the maximum force between atoms was under 100 kJ/mol·nm with a 0.01 nm step size. Minimization was followed by 30 ps of position-restrained MD simulation. The protein was restrained to its initial position, and the solvent was freely equilibrated. The product phase was obtained with the whole system simulated for 10 ns without any restraint using an integral time step of 1 fs with different temperatures. The cutoff for short-range electronic interaction was set to 1.5 nm. The long-range interactions were treated with a particle-mesh Ewald (PME) method with a grid width of 1.2 nm.


Assuntos
Simulação de Dinâmica Molecular , Ubiquitina , Temperatura , Proteínas de Membrana , Conformação Molecular
15.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604812

RESUMO

BACKGROUND: Ovarian cancer (OC) is the leading cause of death from gynecologic malignancies in the Western world. Contributing factors include a high frequency of late-stage diagnosis, the development of chemoresistance, and the evasion of host immune responses. Currently, debulking surgery and platinum-based chemotherapy are the treatment cornerstones, although recurrence is common. As the clinical efficacy of immune checkpoint blockade is low, new immunotherapeutic strategies are needed. Chimeric antigen receptor (CAR) T cell therapy empowers patients' own T cells to fight and eradicate cancer, and has been tested against various targets in OC. A promising candidate is the MUC16 ectodomain. This ectodomain remains on the cell surface after cleavage of cancer antigen 125 (CA125), the domain distal from the membrane, which is currently used as a serum biomarker for OC. CA125 itself has not been tested as a possible CAR target. In this study, we examined the suitability of the CA125 as a target for CAR T cell therapy. METHODS: We tested a series of antibodies raised against the CA125 extracellular repeat domain of MUC16 and adapted them to the CAR format. Comparisons between these candidates, and against an existing CAR targeting the MUC16 ectodomain, identified K101 as having high potency and specificity. The K101CAR was subjected to further biochemical and functional tests, including examination of the effect of soluble CA125 on its activity. Finally, we used cell lines and advanced orthotopic patient-derived xenograft (PDX) models to validate, in vivo, the efficiency of our K101CAR construct. RESULTS: We observed a high efficacy of K101CAR T cells against cell lines and patient-derived tumors, in vitro and in vivo. We also demonstrated that K101CAR functionality was not impaired by the soluble antigen. Finally, in direct comparisons, K101CAR, which targets the CA125 extracellular repeat domains, was shown to have similar efficacy to the previously validated 4H11CAR, which targets the MUC16 ectodomain. CONCLUSIONS: Our in vitro and in vivo results, including PDX studies, demonstrate that the CA125 domain of MUC16 represents an excellent target for treating MUC16-positive malignancies.


Assuntos
Proteínas de Membrana , Neoplasias Ovarianas , Humanos , Feminino , Antígeno Ca-125/metabolismo , Antígeno Ca-125/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico
16.
Cell Death Dis ; 15(3): 199, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38604999

RESUMO

Epidermal growth factor receptor (EGFR)-targeted drugs (erlotinib, etc.) are used to treat multiple types of tumours. EGFR is highly expressed in most triple-negative breast cancer (TNBC) patients. However, only a small proportion of TNBC patients benefit from EGFR-targeted drugs in clinical trials, and the resistance mechanism is unclear. Here, we found that PDZ domain containing 1 (PDZK1) is downregulated in erlotinib-resistant TNBC cells, suggesting that PDZK1 downregulation is related to erlotinib resistance in TNBC. PDZK1 binds to EGFR. Through this interaction, PDZK1 promotes EGFR degradation by enhancing the binding of EGFR to c-Cbl and inhibits EGFR phosphorylation by hindering EGFR dimerisation. We also found that PDZK1 is specifically downregulated in TNBC tissues and correlated with a poor prognosis in TNBC patients. In vitro and in vivo functional assays showed that PDZK1 suppressed TNBC development. Restoration of EGFR expression or kinase inhibitor treatment reversed the degree of cell malignancy induced by PDZK1 overexpression or knockdown, respectively. PDZK1 overexpression sensitised TNBC cells to erlotinib both in vitro and in vivo. In conclusion, PDZK1 is a significant prognostic factor for TNBC and a potential molecular therapeutic target for reversing erlotinib resistance in TNBC cells.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Membrana/uso terapêutico
17.
Nat Commun ; 15(1): 3162, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605024

RESUMO

The organization of membrane proteins between and within membrane-bound compartments is critical to cellular function. Yet we lack approaches to regulate this organization in a range of membrane-based materials, such as engineered cells, exosomes, and liposomes. Uncovering and leveraging biophysical drivers of membrane protein organization to design membrane systems could greatly enhance the functionality of these materials. Towards this goal, we use de novo protein design, molecular dynamic simulations, and cell-free systems to explore how membrane-protein hydrophobic mismatch could be used to tune protein cotranslational integration and organization in synthetic lipid membranes. We find that membranes must deform to accommodate membrane-protein hydrophobic mismatch, which reduces the expression and co-translational insertion of membrane proteins into synthetic membranes. We use this principle to sort proteins both between and within membranes, thereby achieving one-pot assembly of vesicles with distinct functions and controlled split-protein assembly, respectively. Our results shed light on protein organization in biological membranes and provide a framework to design self-organizing membrane-based materials with applications such as artificial cells, biosensors, and therapeutic nanoparticles.


Assuntos
Células Artificiais , Proteínas de Membrana , Membrana Celular/metabolismo , Membranas/metabolismo , Proteínas de Membrana/metabolismo , Lipossomos , Bicamadas Lipídicas/química
18.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607016

RESUMO

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of mono-genetic inherited neurological disorders, whose primary manifestation is the disruption of the pyramidal system, observed as a progressive impaired gait and leg spasticity in patients. Despite the large list of genes linked to this group, which exceeds 80 loci, the number of cellular functions which the gene products engage is relatively limited, among which endoplasmic reticulum (ER) morphogenesis appears central. Mutations in genes encoding ER-shaping proteins are the most common cause of HSP, highlighting the importance of correct ER organisation for long motor neuron survival. However, a major bottleneck in the study of ER morphology is the current lack of quantitative methods, with most studies to date reporting, instead, on qualitative changes. Here, we describe and apply a quantitative image-based screen to identify genetic modifiers of ER organisation using a mammalian cell culture system. An analysis reveals significant quantitative changes in tubular ER and dense sheet ER organisation caused by the siRNA-mediated knockdown of HSP-causing genes ATL1 and RTN2. This screen constitutes the first attempt to examine ER distribution in cells in an automated and high-content manner and to detect genes which impact ER organisation.


Assuntos
Doenças do Sistema Nervoso , Paraplegia Espástica Hereditária , Animais , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Ligação ao GTP/metabolismo , Paraplegia Espástica Hereditária/genética , Mamíferos/metabolismo
19.
Microb Cell Fact ; 23(1): 108, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609965

RESUMO

BACKGROUND: Microbial cell surface display technology allows immobilizing proteins on the cell surface by fusing them to anchoring motifs, thereby endowing the cells with diverse functionalities. However, the assessment of successful protein display and the quantification of displayed proteins remain challenging. The green fluorescent protein (GFP) can be split into two non-fluorescent fragments, while they spontaneously assemble and emit fluorescence when brought together through complementation. Based on split-GFP assembly, we aim to: (1) confirm the success display of passenger proteins, (2) quantify the number of passenger proteins displayed on individual cells. RESULTS: In this study, we propose two innovative methods based on split-green fluorescent protein (split-GFP), named GFP1-10/GFP11 and GFP1-9/GFP10-11 assembly, for the purpose of confirming successful display and quantifying the number of proteins displayed on individual cells. We evaluated the display efficiency of SUMO and ubiquitin using different anchor proteins to demonstrate the feasibility of the two split-GFP assembly systems. To measure the display efficiency of functional proteins, laccase expression was measured using the split-GFP assembly system by co-displaying GFP11 or GFP10-11 tags, respectively. CONCLUSIONS: Our study provides two split-GFP based methods that enable qualitative and quantitative analyses of individual cell display efficiency with a simple workflow, thus facilitating further comprehensive investigations into microbial cell surface display technology. Both split-GFP assembly systems offer a one-step procedure with minimal cost, simplifying the fluorescence analysis of surface-displaying cells.


Assuntos
Proteínas de Membrana , Ubiquitina , Proteínas de Fluorescência Verde/genética , Membrana Celular , Técnicas de Visualização da Superfície Celular
20.
Front Immunol ; 15: 1375171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566986

RESUMO

Background: The underlying molecular pathways of idiopathic pulmonary fibrosis (IPF), a progressive lung condition with a high death rate, are still mostly unknown. By using microarray datasets, this study aims to identify new genetic targets for IPF and provide light on the genetic factors that contribute to the development of IPF. Method: We conducted a comprehensive analysis of three independent IPF datasets from the Gene Expression Omnibus (GEO) database, employing R software for data handling and normalization. Our evaluation of the relationships between differentially expressed genes (DEGs) and IPF included differential expression analysis, expression quantitative trait loci (eQTL) analysis, and Mendelian Randomization(MR) analyses. Additionally, we used Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to explore the functional roles and pathways of these genes. Finally, we validated the results obtained for the target genes. Results: We identified 486 highly expressed genes and 468 lowly expressed genes that play important roles in IPF. MR analysis identified six significantly co-expressed genes associated with IPF, specifically C12orf75, SPP1, ZG16B, LIN7A, PPP1R14A, and TLR2. These genes participate in essential biological processes and pathways, including macrophage activation and neural system regulation. Additionally, CIBERSORT analysis indicated a unique immune cell distribution in IPF, emphasized the significance of immunological processes in the disease. The MR analysis was consistent with the results of the analysis of variance in the validation cohort, which strengthens the reliability of our MR findings. Conclusion: Our findings provide new insights into the molecular basis of IPF and highlight the promise of therapeutic interventions. They emphasize the potential of targeting specific molecular pathways for the treatment of IPF, laying the foundation for further research and clinical work.


Assuntos
Perfilação da Expressão Gênica , Fibrose Pulmonar Idiopática , Humanos , Reprodutibilidade dos Testes , Fibrose Pulmonar Idiopática/genética , Bases de Dados Factuais , Ontologia Genética , Proteínas de Membrana , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...